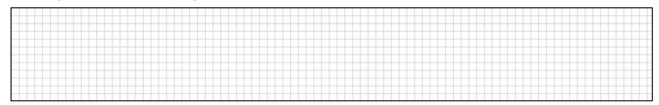
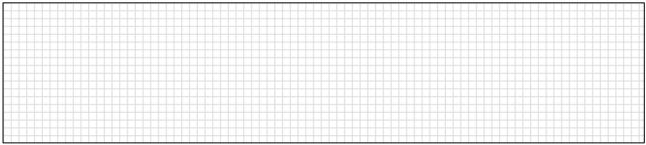

Name:	Vorname:				Seite	21 v	on 8	
FH München, FB 03	Grundlagen der Ele	ktrotechnik			SS 2	2001		
Matrikelnr.:	Hörsaal:	Platz:						
Zugelassene Hilfsmittel: beliebige Aufgabensteller: Göhl, Hö Tinkl, We Arbeitszeit 90 Minuten	cht, Kortstock, Meyer,	Reichl,	A 1	2	3 4	4	Σ	N
 Aufgabe (ca. 15 Punkte) An ein symmetrisches 50-Hz-Dre den Phasenspannungen U_{q1} = U_{q1} eine symmetrische Dreieck-Verb (Z₁, Z₂, Z₃) angeschlossen, die ein P_{ges} = 150 kW bei einem Leistun 0,5 (induktiv) aufnimmt. Wie groß sind die drei Leund I₃ (Ersatzwert 25 A) 	$_{2} = U_{q3} = 5 \text{ kV}$ ist raucherschaltung the Wirkleistung the gsfaktor $\cos \varphi = 0$ where I_{1} , I_{2}			Z ₁			° °-	- -C
1.2 Berechnen Sie den komp	lexen Leitwert Y eines	Verbrauchers						
1.2 Detectined Sie dell Kollip	icacii Leitweit 1 eiiles	v captauctiers.						

Name	:				Vorname:		Seite	e 2 von 8
1.3	verbes	Mit Hilfe von drei in Stern geschalteten Kondensatoren C soll der Leistungsfaktor auf cos $\phi=1$ verbessert werden. 1.3.1 Welche Kapazität C muß ein Kondensator besitzen?						
	1.3.2	Lösun	gshinwe	eis: Bere	verden durch diese Ma Ehnen Sie dazu einen L aus die Leitungsverlust	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere		eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit
		Lösun	gshinwe	eis: Bere	chnen Sie dazu einen L	eiterstrom ohne (b	ereits in 1.1 erfolgt) und mit


Name:	.Vorname:	Seite 3 von 8

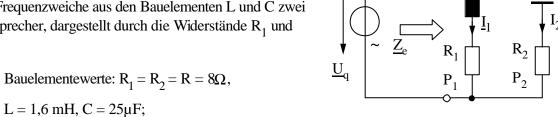
2. Aufgabe (ca. 15 Punkte)



Ein Halogenlampensystem besteht aus zwei identischen Lampen mit den Nennwerten 20W / 12 V. Es wird über ein Drahtseilsystem an ein Gleichstromnetz mit einer Leerlaufspannung $U_0=13,5$ V und einem Innenwiderstand $R_i=0,2$ Ω angeschlossen. Das Drahtseil aus Kupfer ($\rho=1,79\cdot 10^{-8}$ Ω m) hat einen Querschnitt A=2 mm².

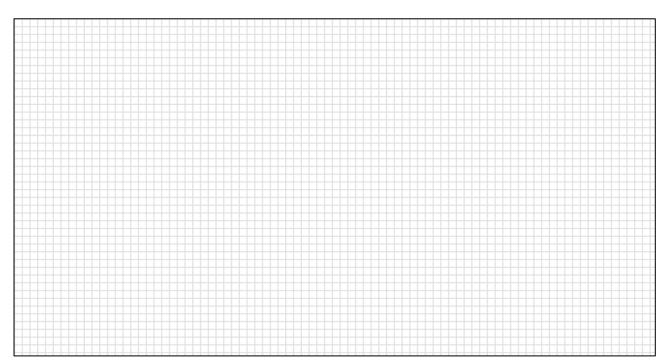
2.1 Welchen Innenwiderstand R_L weisen die Halogenlampen auf? (Ersatzwert: $R=7.5~\Omega$)

2.2 Berechnen Sie den Kabelwiderstand R_K für einen 3,5 m langen Kabelabschnitt!

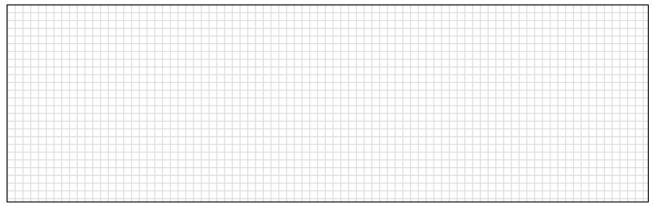

2.3 Zeichnen Sie ein komplettes Ersatzschaltbild!

Name	:Vorname:	Seite 4 von 8
2.4	Berechnen Sie den Ersatzwiderstand $R_{\rm ges}$ der gesamten Last rechts von den Ansch (Ersatzwert: Rges = 3,5 Ω)	lussklemmen!
2.5	Wie groß ist der Gesamtstrom I und welche Spannung U stellt sich an den Anschlu	assklemmen ein?
2.6	Wie groß ist die Spannung U_1 an der ersten Halogenlampe?	
2.0	Wie groß ist die Spanneng O ₁ an der ersten Halogendunge.	

Name:	Vorname:	Seite 5 von 8
· (WIIIC :	······································	. Delice 5 Toll 6


3. Aufgabe (ca. 17 Punkte)

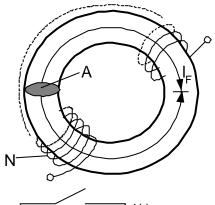
Gegeben ist eine ideale Wechselspannungsquelle mit veränderlicher Frequenz und \underline{U}_q = 16V. Sie versorgt über eine Frequenzweiche aus den Bauelementen L und C zwei Lautsprecher, dargestellt durch die Widerstände \boldsymbol{R}_1 und R₂.

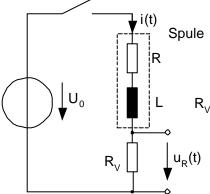


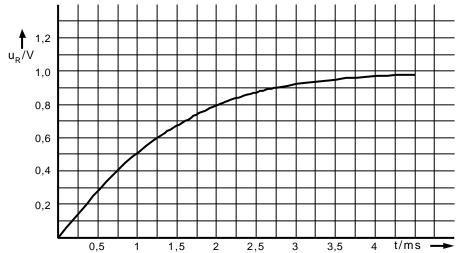
- Die Frequenz betrage f = 398Hz.
- 3.1.1 Berechnen Sie die komplexen Ströme $\underline{I}_1, \underline{I}_2$ und \underline{I} in der P-Form (Exponentialform).

(Ersatzwerte: $I1 = 2.9 \text{ A } e^{-j30^{\circ}}, I2 = 1 \text{ A } e^{-j70^{\circ}}$)

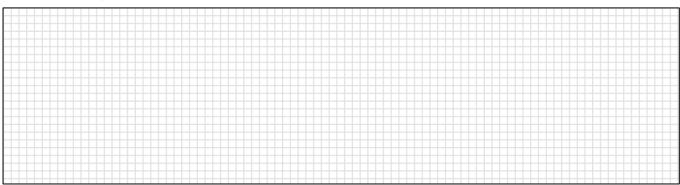
3.1.2 Berechnen Sie die Leistungen P_1 und P_2 in den beiden Widerständen R_1 und R_2 .




Name:	Seite 6 von 8
Mehr Platz auf nächster Seite	
Fortsetzung 3.1.2	
3.2 Die Frequenz sei nun veränderlich.	
Bei welcher Frequenz sind die beiden Leistungen in R ₁ und R ₂ gleich groß?	


4. Aufgabe (ca. 12 Punkte)

Eine Drosselspule mit unbekannten technischen Daten soll nachgebaut werden. Dazu müssen alle wesentlichen Parameter ermittelt werden.


- **Mechanische Parameter**: Der Kern ist ein kreisförmiger Ferrit-Ringkern mit kreisförmigem Querschnitt $A=3,2~\text{cm}^2$ und einer mittleren Feldlinienlänge $l_F=22~\text{cm}$ (Skizze). Er ist mit N=250 Windungen Kupferdraht bewickelt.
- Flektrische Parameter. Die Drosselspule wird gemäß nebenstehender Skizze an eine Autobatterie mit $U_0=12~V$ und vernachlässigbarem Innenwiderstand ange schlossen. Der Vorwiderstand beträgt $R_V=10~\Omega$. Beim Schließen des Schalters misst man mit einem Oszilloskop den folgenden zeitlichen Verlauf der Spannung $u_R(t)$.

4.1 Ermitteln Sie grafisch die Zeitkonstante τ des Einschaltvorgangs und berechnen Sie den maximalen Strom I_{max} , der sich im eingeschwungenen Zustand einstellt.

Name	:Vorname:	Seite 8 von 8
4.2	Berechnen Sie den Widerstand R der Wicklung und die Induktivität L der Drossel (Ersatzwerte: 150Ω ; $0,1 H$).	spule.
1.3	Berechnen Sie den magnetischen Widerstand R _m des Ferritkerns (Ersatzwert 3*10) ⁵ 1/H).
	m · · · · · · · · · · · · · · · · · · ·	·
1.4	Welche relative Permeabilität μ_r hat der Ferritkern?	
#		

----- Viel Erfolg! -----